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Abstract— Fluctuating wind production over  short time periods   
is balanced by adjusting generation from thermal plants to meet 
demand. Thermal ramp rates are limited, so increased variation 
in wind output as wind penetration increases can add to system 
operating costs because of the need for more thermal operating 
reserves. Traditional deterministic modeling techniques fail to 
fully capture these extra costs. We propose a stochastic dynamic 
programming (SDP) approach to unit commitment and dispatch, 
minimizing operating costs by making optimal unit commitment, 
dispatch, and storage decisions in the face of uncertain wind gen-
eration. The SDP solution is compared with two other solutions: 
(1) that of a deterministic dynamic program with perfect wind 
predictions to find the cost of imperfect information, and (2) that 
of a simulation model run under a decision rule, derived from 
Monte Carlo simulations of the deterministic model, to assess the 
cost of sub-optimal stochastic decision making. An example ap-
plication to the Netherlands generation system shows that these 
two types of costs can amount to several percent of total produc-
tion costs, depending on the amount of installed wind capacity.  
These are the conclusions of a single case study with simplified 
assumptions.  Nonetheless, the results indicate that efforts to im-
prove wind forecasting and to develop stochastic commitment 
models may be highly beneficial. 
 

Index Terms—Stochastic Dynamic Programming, Markov 
Chains, Monte Carlo Simulation, Power Market Models, Renew-
able Energy Integration 

I. NOMENCLATURE 
A. Indices and Sets 
 I Set of all aggregate generating units, indexed by i 
 J Set of all component units within an aggregate unit, in-

dexed by j 
Υt Set of all possible states that meet the demand in t 

B. Variables 

 wt Wind generation in t, discretized by Δ in ],0[ w  

tig ,  Generation of i in t, discretized by Δ in )](),([ iiii uGuG  

ts  Storage in t, discretized by Δ in ],0[ tS  

td  Demand in t, discretized by Δ in ],[ tt DD  

tws  Wind spilled in t 

tll  Loss of load in t 
 rrjd Ramping rate of component unit j meeting demand d in 

 
 

 

aggregate unit 
 njd Binary variable: 1 if unit is committed, 0 otherwise 
 ui,t Integer variable: number of component units committed 

within an aggregate unit i in t 
 mct Marginal cost in t 
 xjd Continuous generation level of unit j meeting demand d 
yjd Binary variable: 1 if njd-njd-1 = 1, 0 otherwise 

C. Parameters 
A  Constant from heat rate curve 
B  First order component of heat rate curve 
C  Second order component of heat rate curve 

tS  Storage capacity in t 
iRR  Rate of ramping down unit i ( RRS for storage) 

iRR  Rate of ramping up unit i ( RRS for storage) 
)( ii uG Minimum generation of unit i given commitment ui 

)( ii uG Maximum generation of unit i given commitment ui 
 Δ  Increment between levels of discretized state variables 
UP Penalty for underproduction 
OP Penalty for overproduction 
CL Loss during charging of storage 
DL Loss during discharge of storage 
Demd Demand at level d of aggregate unit, discretized by Δ 

in )](),([ iiii uGuG  
T Number of stages in SDP, indexed by t 
D Number of demand levels in aggregate unit, index by d 

R
dNorm  Ramp normalization factor for demand d 
C
dNorm  Cost normalization factor for demand d 

W1, W2  Weights applied to aggregation model objectives 
SUj,d   Start-up cost of unit j 

D. Functions 
C(uit,uit+1) Cost of unit commitment for unit i moving from 

time t to t+1 
CX(Xt)  Cost of unit dispatch, storage losses, and loss of load 

II. INTRODUCTION 
NERGY security concerns and the desire to minimize 
greenhouse gas emissions has driven energy policy in 

many countries over the past decade. Renewable energy gene-
rating capacity rose steeply in response to the resulting initia-
tives. In 2008, the US became the world’s largest wind energy 
producer after wind capacity increased by 50% in a single 
year, adding 8558 MW [1].  High wind capacity growth is 
likely to continue through the next decade. Many states have 
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ambitious portfolio standards [2], and Congress has been con-
sidering proposals for national renewable portfolio standards. 
However, reliable and economic operation of a generation 
system with large proportions of wind will be a challenge. 

Wind generated electricity is variable and uncertain with 
limited control. Currently, it is often modeled as a negative 
load on the grid in most of the US because its operating costs 
are the lowest, though in Texas, for example, high penetration 
of wind generation has already led to curtailment in some cir-
cumstances [3]. Wind leads to increased variance and uncer-
tainty in the net load met by the thermal part of the system, 
which must therefore be capable of higher production ramping 
rates. Higher operating costs are expected in comparison to an 
equivalent but constant reduction in demand. A power system 
should ideally be scheduled such that the selected unit com-
mitment and dispatch will minimize expected system operat-
ing costs given uncertainty in the demand and supply. 

Integration of wind generation has been a significant area of 
research over the last few years. The aims of such research 
and the different approaches taken are summarized in [4]. 
Smith et al. [5] describe the technical difficulties and benefits 
that arise from wind integration, and present results from past 
integration studies. Many studies have been commissioned or 
carried out by regional planning organizations to determine 
the benefits and challenges of wind integration within their 
area of operation. In the US, the biggest of these include the 
Eastern Wind Integration and Transmission Study (EWITS) 
[6], and the Western Wind and Solar Integration Study 
(WWSIS) [7]. The typical approach taken by such studies is 
summarized in [8]. They simulate the behavior of system op-
erators to find the costs of wind integration, and the effects on 
system operation, as in [9, 10]. US and European studies have 
been compared in [11]. They use historical wind speed, de-
mand, and wind and demand forecast data to simulate the re-
sponse of power systems to increased wind penetration. Un-
certainty in wind generation is dealt with as a forecast error on 
an hourly or greater time scale. Statistical analysis is used to 
determine a reserve requirement, ensuring that forecasting 
errors in wind generation can be dealt with without reliability 
problems. When sub-hourly periods are considered in [12], 
sub-hourly wind generation is predicted with persistence fore-
casting until the next hourly wind forecast.  

These integration studies compare costs of integration for 
different levels of wind generation. However, commitment 
and dispatch are simulated rather than optimally chosen to 
minimize expected system operating cost. Optimal unit com-
mitment models [e.g. 13,14] have traditionally focused on 
selecting commitment and dispatch to minimize cost while 
meeting a deterministic demand. However, a purely thermal 
system does face uncertain demand [15], and deviations from 
the forecasted demand have been met by system operating 
reserve requirements [16]. However, as growing wind penetra-
tions increases uncertainty in the net demand facing thermal 
plants, using predetermined operating reserve margins to en-
sure feasibility may yield suboptimal solutions.  

Some models that address optimal commitment and dis-
patch with uncertain wind generation have been developed. 

Wang et al. [17] present a mixed integer programming based 
approach to commitment with uncertain wind generation that 
ensures reliability considering several Monte Carlo-generated 
scenarios. This method is capable of modeling large systems; 
however dispatch decisions are made without considering the 
statistical dependence of future wind generation on present 
wind status. Short-term uncertainty in wind generation can be 
better captured by a probabilistic definition of wind generation 
in the next model time step, based on the known current and 
previous wind generation, leading to lower operating cost so-
lutions [18]. Modeling the German market, Swider and Weber 
[19] took a stochastic recombining tree approach to unit com-
mitment with probabilistic wind transitions between time pe-
riods. However, their time step was too large to capture unit 
ramping constraints. Tuohy et al. [20] used the WILMAR 
scheduling tool [21] to capture the stochastic behavior of the 
wind variable with rolling planning horizons. Scenarios are 
created using Monte Carlo simulation. Stochastic commitment 
decisions are then made given updated wind forecast informa-
tion and the probability of different scenarios occurring. This 
approach comes closer to capturing the uncertainty faced by 
system operators. However, perfect forecasts are still assumed 
within each scenario, and a spinning reserve requirement is 
used to deal with wind uncertainty. Further, a single hour is 
the shortest time period used in any of the stochastic models.  
The stochastic variability of wind generation over short time 
periods (time steps of 15 minutes or less), when ramping rate 
constraints strongly influence dispatch decisions, is not yet 
addressed in unit commitment modeling efforts. Optimal 
commitment and dispatch models that have smaller time steps 
while accounting for the dependence of wind output on pre-
vious periods may find significantly different solutions and 
costs than models using larger time steps or scenarios.  

We propose a stochastic dynamic programming (SDP) ap-
proach that uses (1)  a shorter time step to better capture ramp 
rate limits and (2) a stochastic process representation of wind 
output rather than scenarios.  We then compare its results with 
those of two other unit commitment models to address two 
questions.  First, what is an upper bound to the value of better 
wind forecasts?  Second, what is the value of stochastic unit 
commitment and dispatch relative to decision making based 
on deterministic models?   

To answer the first question, the results from the SDP ap-
proach are compared to those of a deterministic model solved 
multiple times using Monte Carlo-generated scenarios of wind 
generation. The latter is used to represent the widely used de-
terministic approach that accounts for variation but not uncer-
tainty. We demonstrate the weaknesses in modeling short-term 
unit commitment and dispatch with deterministic models; be-
cause those models assume perfect forecasts of wind and de-
mand, they understate the costs of wind integration.  The dif-
ference in expected performance of the SDP and the Monte 
Carlo/deterministic approach is the economic value of perfect 
wind and demand forecasts, which is an upper bound to the 
value of improvements in such forecasts. 

The second question is addressed by comparing the SDP re-
sults with those of a model that uses a heuristic rule for com-
mitment and dispatch decisions. A fixed operating reserve 
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requirement is an example of a heuristic decision rule that 
might not be optimal in all situations. The heuristic we consid-
er is derived  by first analyzing the results of the above  Monte 
Carlo/deterministic model to identify the most commonly tak-
en commitment decision taken within each system state 
(across all the scenarios considered), and then use a single 
time step optimization to find the lowest cost dispatch for the 
next time interval, subject to that commitment. The results of 
this heuristic operation strategy are compared to the results 
from the SDP to quantify the cost of suboptimal decision mak-
ing and the possible benefits of stochastic optimization of dis-
patch and unit commitment. 

Depending on the magnitude of the cost of suboptimal deci-
sion making, this model comparison may show either that sys-
tem operating costs can be estimated and satisfactory operat-
ing strategies found using deterministic modeling approaches 
combined with heuristic decision rules, or, alternatively, that 
large scale commitment and dispatch models would benefit 
from explicitly including uncertainty. The adequacy of a de-
terministic decision rule approach is likely to depend on the 
level of wind penetration. 

The following section describes the models we apply. The 
SDP formulation is given in III.A followed by the stochastic 
model of wind production in III.B.  Descriptions of the Monte 
Carlo/deterministic model and decision rule model are given 
in III.C and III.D respectively. To overcome the curse of di-
mensionality found in dynamic programming, the Netherlands 
generation units were aggregated into four groups, each with 
similar characteristics. The aggregation process is described in 
III.E. The results of unit aggregation are presented in IV.A and 
the model comparisons are presented in IV.B, including our 
estimates of the value of perfect information and the value of 
stochastic optimization for the Netherlands system under vari-
ous level of wind investment.   

III. MODELS 
A SDP-based commitment and dispatch model is a stochas-

tic optimization that identifies an optimal strategy, defined as 
the immediate decision, for each system operating state at 
each time stage, that minimizes expected future costs. This can 
be viewed as the search for the lowest cost probabilistic paths 
through a stochastic nework. In our general model, each stage 
includes the following state variables: electricity demand, 
generation from wind, generation from each thermal unit in 
the system, commitment status of each unit, and how much 
electricity is being stored.  Each of these variables is discre-
tized through selection of some basic increment of energy, 
resulting in a finite number of levels that each variable can 
realize. Demand and wind are assumed to evolve over time 
according to a Markov process.  The set of states within each 
stage contains all the combinations of state variables that meet 
demand in that stage.  

A. SDP Formulation 
The model can be described through a two stage optimiza-

tion by the following recursive Bellman equation [22]: 
For each {t,Yt}: 

 Ft(Yt) = 
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RRSssRRS tt ≤−≤ +1  (5) 

 tt Ss ≤≤0  (6) 
with Xt={gt, gt+1, st, st+1,llt+1} and Yt = {wt,dt,ut,gt st} such that 
Yt∈Υt.  

The two minimizations in (1) correspond to the two deci-
sions being made by the system operator within a time step. In 
the first, or outer, minimization, a unit commitment decision 
for each aggregate unit is made before the wind generation is 
realized. The decision made gives the best commitment deci-
sion based on a minimization of the expected cost of genera-
tion. The second, or inner, minimization occurs after wind 
generation is realized. This is the unit dispatch and electricity 
storage decision, which is subject to the constraints (2)-(6).  

In the general form, the model can account for ramping 
costs [23] from gt to gt+1. However, to reduce model solution 
time, it was assumed that ramping occurs as an instantaneous 
step change at the beginning of each 15 minute period. The 
cost function CX(Xt) therefore calculates the fuel cost of conti-
nuous operation at gt+1 over the period, unit start-up and shut-
down costs, plus the cost of any losses due to storage charging 
and discharging,1 and the cost of any loss of load (7): 
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Some unit commitment characteristics were not considered 
including minimum unit up times and down times and start-up 
costs as a function of the time that a unit has been shut down. 

 
1 The costs of charging and discharging losses from storage are approx-

imate. To ensure contributions to and from storage remained a multiple of Δ, 
the lost energy from charging and discharging was covered by incrementing 
the operation of the marginal unit in t+1 by an amount equal to the loss. Costs 
from charging losses are accrued at the marginal unit cost at time of charging 
and discharging costs occur at the time of discharging. Ramping rate and 
maximum generation constraints of the marginal unit are not accounted for 
during this calculation. This approach is justified since losses from storage are 
likely to be small in comparison to the ramping limits of the gas units, which 
have themselves been approximated to multiples of Δ. Moreover, the gas units 
are shown in the results to rarely operate at maximum production levels. 
Modeling large storage capacities might justify more sophisticated accounting 
of ramp and capacity constraints, though at the cost of longer model run times.   
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A heuristic approach to solving the SDP simulates market 
conditions where spilling wind or loss of load are last resort 
options, and if a feasible commitment and dispatch is available 
without utilizing them, it is chosen in preference. Unless (2)-
(6) cannot be satisfied, the inner minimization is over 
{gt+1,st+1}, setting wst+1 and llt+1 equal to zero; if there is no 
feasible {gt+1,st+1}in that case, then nonzero spill and loss of 
load are considered by allowing wind to be spilled and penal-
ties on loss of load to be imposed.  Loss of load is penalized at 
a rate of $1000/MWh and spill is penalized at $30/MWh, and 
not allowed to exceed wt+1.  

The conditional probability in (1) captures the uncertainty a 
system operator faces when making decisions for the next 
period. This formulation assumes that the behavior of wind 
generation can be described by a first-order Markov process. 
Although higher order Markov processes could be represented 
by conditioning upon additional lagged wind state variables, 
the size of the commitment and dispatch problem precludes 
their use (the DP ‘curse of dimensionality’). However, based 
on our analysis of Netherlands wind generation time series in 
section III.B, we conclude that the daily evolution of wind 
production on a 15 minute time step is adequately estimated 
by a first order Markov chain. 

The size of the commitment and dispatch problem also lim-
its the number of generating units that can be modeled by the 
SDP approach. Each unit i in I is therefore an aggregate unit 
constructed from component units with similar characteristics. 
A component unit is a physical generating unit in the Nether-
lands. Section III.E describes the process of unit aggregation. 

The model was solved for 24 hours (or 96 15-minute stag-
es), given a known initial wind state. The initial generation 
state was not set, rather costs were found for all possible initial 
generation states. The results presented in this paper use the 
results from the lowest cost initial generation state. 

B. Markov Chain Wind Model Estimation and Evaluation 
To simplify the model formulation for the comparison pre-

sented in this paper, demand was assumed to be deterministic, 
leaving wind as the only uncertain variable. A year of aggre-
gate Netherlands wind generation data, recorded at 15 minute 
intervals, and scaled to 35% onshore and 65% offshore with a 
total capacity of 4600 MW was provided by ECN [24]. Short-
term wind speed simulation models that capture the statistical 
characteristics of a wind time series are often complex. How-
ever wind speed data can first be translated in to wind power 
production by truncating the tails of the wind speed distribu-
tion in which power production is zero. Papaefthymiou and 
Klockl [18] show that the resulting generation time series can 
be simulated using a Markov Chain.   

Markov Chain simulation requires that the continuous sto-
chastic variable, in this case wind, be discretized into a num-
ber of bins or states. For example, in the case of a maximum 
wind generation of 4500MW, nine evenly sized bins are 
shown in Fig. 2, where the median value of each bin 
represents its contents. In the SDP, the median values must be 
multiples of increment Δ.  

The second step of Markov Chain simulation is to construct 
a Markov transition matrix. First order Markov chains have a 
two dimensional transition matrix that records the probability 
of moving from each discrete wind state in time t to any other 

in time t+1, shown for the nine bin example in (8). This 
square matrix is populated by the probability of each state to 
state transition by recording the frequency of each transition 
occurring in the historic record. 
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To verify the fit of the simulated data to the real time series, 
and to generate random wind time series for use in the deter-
ministic model, the following process is followed. A cumula-
tive probability transition matrix is formed from the transition 
matrix where each entry ∑ −=

=
1,...,1 nq mqmn pc , with m in-

dexing the states in stage t and n indexing the states in t+1. 
When simulating wind generation data, a uniform random 
number, U, on [0,1] was generated to find the wind state in the 
next stage. If the system is in state m in stage t, the wind state 
in the next stage would be state n such that mnmn cUc ≤<−1 . 
This procedure is described in detail in [18]. Four year long 
time series were created, ensuring that they were representa-
tive of the stationary Markov chain distribution. 

 Discretizing a continuous variable results in loss of infor-
mation. The fewer discrete states that are considered, the more 
information is lost. Conversely, if too many states are chosen, 
probabilities in the transition matrix (8) will be subject to 
more sample error, because certain state to state combinations 
will occur rarely [18]. In this analysis, the number of discrete 
states was chosen to give the best fit in terms of two statistical 
characteristics of the historical time series: the autocorrelation 
function (acf) and the unconditional probability density func-
tion (pdf).   A comparison of the acfs evaluates how well the 
simulated data captures the degree of persistence in the real 
time series [18].  Meanwhile, comparing the pdfs of simulated 
wind output data to that of the real data determines how well 
the Markov process captures the long term frequency of wind 
generation levels. 

Information is also lost if a single transition matrix is as-
sumed for transitions for all hours of the day.  This is certainly 
inappropriate in regions with strong diurnal wind patterns. The 
SDP is capable of using time-of-day as well as monthly diffe-
rentiated transition matrices to reflect the diurnal and seasonal 
patterns often observed in wind time series. In this case, a sep-
arate transition matrix would be constructed for each period of 
the day. However, constructing separate transition matrices for 
different time periods reduces the data used to construct each 
transition matrix. Transition matrices at the 15 minute level 
were not possible due to the lack of data for each period. Di-
viding the historical record into hourly periods however did 
yield good results based on the Dutch data.  For this reason, 
we consider a third characteristic to assess the performance of 
differentiated transition matrices. In particular, the average 
daily wind generation profile from differentiated transition 
matrices was compared to the historical average daily wind 
profile to assess the quality of fit.  

 The acf comparison for several different Markov models us-
ing a single transition matrix is shown in fig 1. These are 
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shown for 5, 8 and 9 bins. Shown in the same figure are the 
results from hourly differentiated transition matrices. Only the 
best hourly differentiated model is shown, which had 9 bins. 

 

 
Fig. 1. The acf of wind production data simulated with varying bin numbers in 

the Markov model vs the acf of the real time series. 
 

The results of the acf analysis show that as bin size is 
increased from 5 to 9 bins for the single transition matrix 
model, the fit to the real data improves. The fit at 9 bins shows 
close agreement to the persistance of the real data. Higher 
numbers of bins did not improve the fit further. The same 
trend was observed using hourly differentiated transition 
matrices (only the 9 bins results are shown in fig. 1). 

The pdf comparison between the real data and the 9 bin 
single transition matrix model simulation is given in fig 2(a). 
The expected wind generation in the scaled real data provided 
by ECN is 1739MW. In the simulated data it is 1766MW, so 
close agreement to the real data is found. This together with 
the acf comparison shows that the characteristics of the 
Netherlands wind generation time series are well captured in 
the SDP when using a 9 bin first order Markov chain to 
represent the stochastic wind variable. 

  
Fig. 2. The pdf of 9 bin Markov chain simulated data vs real data. Left: (a) 
single transition matrix. Right: (b) differentiated hourly transition matrices 

 
The pdf of the differentiated 9 bin model is shown in fig 

2(b). A small bias towards higher wind states is seen in the 
simulated wind data. This may be caused by a lack of data to 
form accurate differentiated hourly transition matrices.  

In the third comparison of simulated and historical data, we 
compare the steady state expected wind generation for the 
differentiated 9 bin model and the actual data in fig 3. Though 

the shape of the diurnal trend is well captured, a slight bias 
towards higher levels of wind generation is seen here too. This 
upward bias has two components, the larger being the lack of 
data. The fit could be expected to improve with increasing size 
of the historical dataset. With a larger dataset, differentiation 
by month as well as hour may further improve the fit. 
 

 
Fig.3. Daily expected wind gen profile for real and simulated time series 

 
The second component, a systematic upward bias of up to 

1% at low wind generation levels appears to beintroduced by 
using the median bin wind generation as the value of wind 
generation associated with each bin in the simulated data. That 
bin value is restricted by the SDP methodology to be a 
multiple of the increment used in the dynamic program. 
However, that upward bias can be minimized by selecting 
upper and lower limits for each bin that approximately set the 
average wind generation in each bin equal to the 
corresponding bin value. This could be accomplished by an 
optimization in which limits are chosen to minimize the 
difference between the bin value and average wind generation 
in each bin. 
 These slight upward shifts in average values are unlikely to 
materially affect the main conclusions of this paper 
concerning the impacts of wind variability and forecast 
uncertainty upon expected costs. 
 It is important to note that the Markov chain derived here is 
specific to a single year of wind generation data. Not only 
would more years of data improve the fit and allow greater 
chain differentiation, it would also result in a model more 
representative of annual wind energy output. Ideally the 
historical data should approximate the long term mean energy 
output of wind in the region being modeled.  
 The average daily demand profile for the Netherlands 
(based on year 2006) is shown below in fig. 4 for comparison. 
Wind generation increases in unison with increasing demand 
in the morning. However, as demand peaks in late afternoon, 
wind generation drops off. 
 

 
Fig.4. Deterministic daily demand profile 
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C. Monte Carlo/Deterministic Dynamic Program (MCDP) 
To capture the uncertainty in wind production using a scena-

rio-based deterministic modeling approach, the SDP was sim-
plified to a deterministic dynamic program that optimizes sub-
ject to perfect wind forecast. A set of wind generation scena-
rios, A, was created with Monte Carlo sampling of the transi-
tion matrix (8) using the same procedure used to simulate 
wind data in section III.B. The result was a vector of wind 
outputs, wa, for each generation scenario a ∈ A. For each a ∈ 
A, P(wa,t+1|wa,t) was set to 1 and all other transition probabili-
ties were set to 0, reducing the SDP to a deterministic DP. 

For each level of wind capacity investigated, we ran 1000 
scenarios. Averaging the costs from the 1000 MCDP runs 
gave the expected cost. This represented the total operating 
cost given perfect forecasts of wind generation over the 24 
hour period examined with the model.  This provides a lower 
bound (subject to sample error from the Monte Carlo sam-
pling) for the expected cost from an optimal stochastic solu-
tion from the SDP, since the SDP optimizes for the more rea-
listic case of imperfect knowledge of future wind output.  

D. Suboptimal Decision Rule Model 
The suboptimal decision rule is a heuristic method of mak-

ing commitment and dispatch decisions for the next time pe-
riod. It was designed to be a readily implementable by system 
operators using existing deterministic unit commitment and 
dispatch models. 
 Over a sufficient number of simulations of a deterministic 
model such as the MCDP of the previous section, many com-
mitment and dispatch decisions can be observed for each state 
in each time period t, and the most common commitment deci-
sion made in each state can be noted. The most common dis-
patch decisions made once wind generation in t+1 is realized 
can also be recorded. This database of the most frequently 
made decisions in the deterministic commitment and dispatch 
model runs can then be used to derive an operating rule for 
system operators, prescribing what is to be done under each 
system state. 
 This approach to creating an operating rule has two prob-
lems. First, the number of possible combinations of state va-
riables at any point in time is extremely large. Not all of those 
combinations will occur, even if thousands of scenario-based 
deterministic model runs are made. Thus there will be states 
for which there are few or no observed decisions. Second, the 
most commonly made commitment decisions from the MCDP 
will often only satisfy demand in t+1 for the wind generation 
state in t+1 with the highest probability. To meet other possi-
ble wind generation states, wind spill or loss of load penalties 
may be incurred, and the expected cost may be higher than for 
an optimal stochastic policy from a SDP.  
 To solve the first problem, if no commitment decision is 
available in the operator’s database, then a single step SDP 
optimization is used to determine the next transition.  That is, 
given the probability distribution of wind generation in the 
next period, what are the lowest cost commitment and dis-
patch decisions to take in t without regard to stages beyond 
t+1? If the database of decisions recorded from scenario mod-
eling is sufficiently populated, this single state optimization 

will rarely occur. Furthermore, because this is a single stage 
optimization of one period’s decisions, an approach capable of 
modeling larger numbers of generating units could be substi-
tuted for the SDP, such as proposed in [4]. An alternative to 
the single step optimization would be to use a surrogate com-
mitment decision from a closely related state that has an avail-
able decision in the database.   

Turning to the second problem, commitment decisions are 
available for a given state from the database of simulation 
runs; however a dispatch decision is unavailable for some of 
the possible wind states. In this case the single step optimiza-
tion is used to decide dispatch, spill, and loss of load while 
making the commitment that occurs most often for that state in 
the database of simulations. 
 The expected cost of using this decision rule will be higher 
than the SDP since decisions taken in scenario modeling with 
perfect foresight often leave the system inadequately insured 
against rare or unexpected changes in wind generation. This 
could result is higher fuel costs or loss of load.  The SDP, in 
contrast, by design minimizes expected cost.   

E. Unit Aggregation 
Unit aggregation is necessary because of the curse of di-

mensionality; it is not possible to include generation of each 
individual unit as a state variable. Intractable energy model 
formulations are common with large numbers of units, and 
aggregation is often used to reduce problem sizes. An example 
is given in [25], where Langrene et al. solve a large scale dis-
patch model with dynamic constraints by making use of unit 
aggregation. An SDP containing aggregate units represents 
only a subset of the possible unit dispatch configurations.  
Thus operating costs may be different than when units can act 
independently; for instance, the additional flexibility may re-
sult in lower costs. Applications of this methodology that have 
fewer aggregations and more units will result in better approx-
imations of the cost. In the example application to the Nether-
lands system, however, both the SDP and the DP contain the 
same aggregate units, so the comparative cost results are valid 
given the aggregate system modeled. Future work in this area 
will focus on reducing the aggregation required, and investi-
gating its effect on expected cost estimates. 

We undertake aggregation in two steps. First, we divided 
the generating units into subsets, each representing one aggre-
gate unit. Second, we define the characteristics of each aggre-
gate unit, including min and max capacity; ramp rates as a 
function of the level of aggregate unit output; and operating 
cost as a function of the level of aggregate unit output.  
 Addressing the first step, aggregate units were defined cor-
responding to generation type including coal, natural gas, and 
combustion turbines. The natural gas aggregate was split fur-
ther into two subgroups of units with similar marginal costs.  

Once aggregate units were chosen, their characteristics were 
found in the second step.  Aggregation of units for use in the 
SDP cannot follow simple stacking by marginal or average 
cost because of the short time step used in the SDP. Such 
stacking would be appropriate only if component units in the 
aggregate were flexible enough to transition from stacked cost 
dispatch to stacked cost dispatch during all transitions encoun-



Draft of March 2012 
 

 

7

tered during system operation within the 15 minute time step; 
however, ramping rates make this impossible. As such, the 
ramping rates and operating costs of an aggregate unit, when 
meeting a certain demand in t+1, are influenced by the state of 
each component unit meeting demand in t; as a result, ramp 
rate constraints prevent an aggregate unit from moving to the 
minimum cost operating point in every stage. The ideal defini-
tion of an aggregate unit will meet some objective, for exam-
ple maximizing ramping rates across all levels of output of the 
aggregate unit. We used a mixed integer linear program 
(MILP) to aggregate units according to two competing objec-
tives: minimizing operating costs and maximizing ramp rates, 
each normalized over the ranges of possible output.  In that 
aggregation process, it was necessary to assume linear variable 
costs for each component unit.  However, the more accurate 
quadratic cost functions for component units were the basis of 
the final calculation of the operating costs function for the 
aggregate units.  

The formulation of the MILP aggregation model is below: 
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DdDemx

Jj ddj ..1, =∀=∑ ∈
  (10) 

DdJjxGrr djjdj ..1,,, =∈∀−≤  (11) 

DdJjRnrr jdjdj ..1,,, =∈∀≤  (12) 

DdJjGnxrr jdjdjdj ..1,,,, =∈∀−≤  (13) 

DdJjRnrr jdjdj ..1,,, =∈∀≤  (14) 

DdJjGnx jdjdj ..1,,, =∈∀≥  (15) 

DdJjGnx jdjdj ..1,,, =∈∀≤  (16) 

1...1,)1( ,,,1, −=∈∀−++≤+ DdJjGnRnxx jdjjdjdjdj

 (17) 
jnny djdjdj ∀−≥ −1,,,  (18) 

with ( )djdj xnF ,, , = ( )( ) djjjjjdjjdjj xGGCBySUnA ,,, 2/−+++ . 
The objective function (9) minimizes operating costs while 
maximizing ramping rates according to the weights placed on 
each objective. A solution that optimizes one objective will 
not optimize the other; for instance, maximizing rampability 
requires more units being operated between their lower and 
upper bounds than if units are committed to minimize cost; 
thus, the weighted objective will achieve a compromise be-
tween the two goals.  The optimization is subject to an energy 
balance (10), ramping rate constraints (11)-(14), and unit 
commitment constraints (15) and (16). Constraint (17) ensures 
that no component unit violates its ramping rate constraints 
when the aggregate unit ramps generation up or down by Δ, 
the increment in the state variability discretization. Constraint 

(18) imposes a start-up cost for units transitioning to commit-
ted status.2 

IV. EXAMPLE APPLICATION: NETHERLANDS CASE STUDY 

A. Aggregate Unit Summary 
The characteristics of the four aggregate units are summa-

rized in Table 1. These were generated from information on 
Dutch generating units, including fixed operating costs, qua-
dratic heat rate curves, capacities, ramping rates and fuel 
costs. Start-up costs were estimated from industry data [e.g., 
26].The output of combined heat and power plants is deducted 
from the load, assuming that they are committed to meet heat 
demand and not in response to power prices.  No storage was 
modeled in the example. 

Component units within the gas fueled aggregates were also 
assumed to be capable of starting up to minimum generation 
and shutting down from minimum generation in a 15 minute 
time period. This reflects the assumption that a unit is required 
to reach minimum generation before being connected to the 
grid, and ramping down generation to minimum levels before 
being disconnected. However, the SDP makes commitment 
decisions 15 minutes prior to a unit coming online, biasing the 
model towards higher system flexibility than is actually the 
case, at least for gas steam units. Higher flexibility is expected 
to lead to lower total operating costs; this limitation of the 
model is to be addressed in future work. This is the opposite 
bias of most wind integration studies, which instead assume 
fixed commitment schedules. For example, [4] assumes day 
ahead commitment and [20] used 3 hour commitment blocks. 
Component units within the coal aggregate in the SDP were 
assumed to follow a fixed commitment schedule determined at 
the beginning of the day. For the example here, all coal units 
were committed to be on-line for the full 24 hours. 

Each aggregate unit was created using the model (9)-(18) -
presented in the previous section, using equal weights on each 
of the two objectives. The generation range of each unit was 
discretized using a value of 250MW for Δ, striking a balance 
between SDP processing time and accuracy. Component gas 
units with a minimum marginal cost less than $46/MW were 
assigned to aggregate unit Gas 1, and those above were as-
signed to Gas 2. We chose this rule because with uncon-
strained ramping and units committed by marginal cost, those 

 
2 Significant improvements in model run time can be made by adding the 

following cuts to the feasible region. 

∑ ∈
=∀≤

Jj ddj DdDemCn ..1min,
  

∑ ∈
=∀≥

Jj ddj DdDemCn ..1max,
 

These are necessarily satisfied by any feasible solution.  
 Our use of aggregate units locks in an ordering of unit commitment (de-
commitment) that each component unit must follow as the aggregate unit 
increases (decreases) generation, removing some flexibility from the model 
compared to a unit commitment model that models each of the component 
units separately. The possible states of generation to meet demand in each 
stage in the SDP are therefore a subset of all possible combinations of compo-
nent unit states. The solution to the SDP will therefore likely be suboptimal, 
having a higher expected cost than the true optimum. However, our use of 
consistent aggregate units for all three modeling approaches investigated in 
this paper allows for a consistent comparison, allowing us to answer our two 
questions about value of perfect forecasts and stochastic optimization. 
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in the lower marginal cost group would be committed before 
those in the higher group. Since each component coal unit is 
committed for all 24 hours, coal output ranges from the collec-
tive minimum generation of all coal units to their maximum. 

 
TABLE I 

CHARACTERISTICS OF AGGREGATE UNITS 
Aggregate 

Unit 
Generation # Component 

Units 
# Commitments 

to max Max Min 

Coal 4750 2500 11 0 
Gas 1 4000 0 11 9 
Gas 2 5250 0 22 9 

CT 250 0 9 1 
 
 The final column in Table 1 is the number of times one or 
more component units are committed during an increase in 
generation of the aggregate unit over the entire range of out-
put. For example, the set of committed component units in 
Gas 1 changes 9 times when ramping from 0 to 4000 MW. 
 The total variable cost as well as its derivative (marginal 
cost) for each aggregate unit are shown below in Fig. 5. The 
marginal cost of Gas 1 is not monotonic. This is due to the 
balance struck by the aggregation model (9)-(18) between 
ramping flexibility and cost for each of the aggregate units. 
The ramping capabilities of each unit are shown in fig. 6. 
These have been rounded to the increment size of 250MW. 
The upward ramp rate is highest at zero generation for the gas 
units because there is the potential to turn on all generators at 
the same time. Rampability decreases as the maximum genera-
tion of the aggregate unit is approached because more of the 
component units are operating at or near their capacity. Like-
wise, maximum downward ramp rates decrease as generation 
decreases because minimum operating levels are approached 
for more component units.  
 

 
Fig. 5. Aggregate unit characteristics. Left: (a) variable costs. Right: (b) mar-

ginal costs.  
 

 
Fig. 6. Maximum ramp rates for aggregate units. Left: (a) ramp up. Right: (b) 

ramp down. 

B. Model Comparison 
Each of the three models was run under the same conditions 

for four different levels of installed wind capacity. The ex-
pected wind generation is shown in fig. 7.  These are all above 
the 2009 Dutch installed capacity of 2220 MW.  At the highest 
installed capacity, annual wind production would amount to 
about 27% of the country’s annual energy requirements.  This 
is broadly comparable to 2020 renewable targets in Europe 
and California. The initial state of wind generation at hour 
zero was set at two wind states above minimum wind genera-
tion.  The Markov wind model based on hourly differentiated 
9 bin transition matrices ((as described in Section III.B) is 
used in each case. The evolution of expected wind generation 
is dependent on the initial wind state in the model. 

 

 
Fig. 7. Expected wind generation at different levels of installed wind capacity 
 

 
Fig.8. Total predicted 1 day system operating costs using differentiated 

transition matrices   
 

Figure 8 shows the results of the model comparisons. The 
average cost for the 1000 deterministic solutions using Monte 
Carlo-generated perfect forecasts (the MCDP model) is given 
along with its 95% confidence interval, accounting for sam-
pling error in the Monte Carlo process. That cost is the lowest 
among the three models because commitment and dispatch 
decisions are made knowing exactly what the wind will do in 
the future, i.e., perfect forecasting.  If, for instance, it is known 
that wind will drop precipitously exactly two hours from now, 
then units can be redispatched over those two hours to in-
crease the amount of ramp available when needed.  This level 
of foresight is unrealistic. The SDP is more realistic, as it 
represents uncertainty in wind forecasts. It yields the theoreti-
cally optimal feasible system operating decisions, given that 
uncertainty. Finally, the decision rule (MCDP DR) model 
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yields higher costs because it uses a heuristic rule to make 
commitment and dispatch decisions in each state, rather than 
minimizing expected cost.  

Both the decision rule and MCDP costs closely approximate 
those of the SDP at the lowest level of wind integration. But as 
the amount of installed wind capacity increases, the MCDP 
increasingly underestimates the attainable system cost until, at 
a maximum wind generation of 9000 MW, the difference be-
tween the SDP and MCDP solutions is 11% (fig. 8). The dif-
ference between the SDP and MCDP costs gives the value of 
perfect wind forecasts. This shows that scenario-based model-
ing using a deterministic model and perfect wind forecasting, 
as used in some wind integration studies, can significantly 
underestimate system operating costs, thus overestimating the 
value of wind generation at high levels of wind integration.  

 
Fig. 9. Marginal value of wind generation found using differentiated transi-

tion matrices 
 

Fig. 9 illustrates this overestimation, showing the incremen-
tal value of wind estimated by each model (i.e., the negative of 
the slopes in Fig. 8).  At 9000 MW maximum wind genera-
tion, the values of wind found by the SDP and DR models are 
77% and 69% respectively of that found with perfect forecasts 
(MCDP).  Fig. 9 also shows that wind investment provides 
diminishing marginal returns, with its value decreasing from 
about 50 to 30 $/MWh for the SDP and DR models. 

To explore why these results occur  the average dispatch by 
hour for the SDP and MCDP models are shown in Figs. 10 
and 11, respectively. For each model, the dispatch under the 
lowest and highest levels of wind integration are presented. 

 

  
Fig. 10. SDP expected dispatch chart. Left: (a) 2375 MW wind capacity. 

Right: (b) 9000 MW wind capacity 
 

  
Fig. 11. MCDP expected dispatch chart. Left: (a) 2375 MW wind capacity. 

Right: (b) 9000 MW wind capacity. 
 
At the lowest level of wind integration, the dispatch from 

the SDP and MCDP models are very similar. Coal operates at 
or very close to maximum capacity and, other than during the 
low demand period early in the morning, Gas 2 does most of 
the load following. Yet at the highest level of integration, dis-
patch from the two models is markedly different. In each stage 
in the MCDP model, the model chooses the optimal commit-
ment and dispatch given the known wind generation for the 
rest of the day. In contrast, the SDP chooses the optimal deci-
sion given the full range of wind profiles that can occur. This 
difference is observable in the dispatch charts. The SDP oper-
ates units to maintain a higher level of system ramping ability 
than does the MCDP, resulting in the large difference in oper-
ating costs. The MCDP produces 11% more energy than the 
SDP from coal over the day; 2% more from cheap gas; 46% 
less from expensive gas; and 32% less from combustion tur-
bines.  
 As installed wind capacity increases, the cost penalty from 
using the heuristic DR model rather than the optimal SDP also 
increases. This shows that basing an operating rule upon 
commitments from the MCDP model with perfect forecasts 
can yield significantly higher costs than stochastic optimiza-
tion, although the differences are insignificant at low levels of 
wind penetration.  At a wind capacity of 9000 MW, the largest 
difference in operating cost between the two (i.e., the benefit 
of stochastic optimization) is 4%.  However, this is less than 
half the largest difference between MCDP and SDP costs (i.e., 
the value of perfect forecasts).  Whether this is a general result 
that would occur for other systems cannot be determined, 
however, without applying these models to other cases. 
 The percentage of wind spilled at each level of wind inte-
gration is shown in figs. 12 and 13. All models show negligi-
ble wind spill at the lowest level of wind integration. As wind 
investment increases though, wind spill rises significantly. The 
SDP shows the highest wind spill out of all the modeling ap-
proaches at the higher levels of wind integration. Spilled wind 
may be highly volatile from stage to stage because the level of 
spill is not explicitly optimized in our SDP approach. Rather 
wind is spilled as a last resort to maintain feasibility during 
transitions from states with no other options.   Meanwhile, as 
might be expected, the MCDP has lower spill because units 
can be committed ahead of time in anticipation of precisely 
what wind generation will occur in each hour. Finally, the 
MCDP decision rule model shows higher spill than the MCDP 
because unit commitment decisions are made with heuristics 
based on imperfect information.   
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Fig.12. Wind spill. Left: (a) 2375 MW wind capacity. Right: (b) 4500MW 

wind capacity 
 

 
Fig.13. Wind spill. Left: (a) 6875 MW wind capacity. Right: (b) 9000 MW 

wind capacity 
 

 The deterioration in performance of the decision rule 
heuristic can be inferred from comparing figs. 12 and 13 with 
the corresponding unserved load shown in figs.14 and 15. For 
a wind capacity of 6875 MW, the spill observed in the SDP 
solution early in the morning is replaced by unserved load in 
the DR solution. Similarly at 9000 MW maximum wind 
generation, the DR has significantly higher unserved load than 
the SDP at times when the SDP is spilling more wind than the 
decision rule model. This shows that the SDP prefers to 
commit thermal units that can ramp up to meet the maximum 
possible  demand net of wind in the next period, at the expense 
of more spilled wind if instead net demand is low and the 
thermal units are against their minimum run or ramp down 
constraints. This makes sense because the penalty on unserved 
load is very high. The decision rule model however must use 
the most common commitment decision found in the MCDP 
for a given state in t. Commitment decisions made in the 
MCDP are likely to meet the most probable wind state in the 
next stage at lowest cost without allowance for less probable 
but large fluctuations in wind. The DR model is therefore 
predisposed to commitment too few units in meeting uncertain 
demand, resulting in higher levels of unserved demand than 
the SDP. 
 

 
Fig.14. Unserved load. Left: (a) 2375 MW wind capacity. Right: (b) 4500MW 

wind capacity 
 

 
Fig.15. Unserved load. Left: (a) 6875 MW wind capacity. Right: (b) 9000 MW 

wind capacity 

V. CONCLUSION 
As the penetration of wind power increases, the difference 

in total operating cost found by stochastic optimation (SDP) 
versus a scenario-based deterministic model (MCDP) 
increases significantly, resulting in a cost difference equal to 
11% of the SDP total operating cost at the highest level of 
wind integration studied.  This difference is the value of 
perfect forecasts, and also indicates the extent to which using 
such deterministic models for wind integration studies can 
understate the cost of wind integration.  This difference is 
equivalent to the deterministic model overstating the marginal 
value of wind generation by almost 50%, relative to the SDP 
marginal value at the highest wind penetration.  The implicit 
assumption of perfect information in deterministic models is 
the cause of this inflation of the value of wind.  

As expected, the decision rule results in higher costs than 
the SDP model (and thus lower marginal value of wind). This 
is in part due to increased unserved demand. However, the 
probability of unserved demand occuring is low, which 
partially accounts for the cost of suboptimal decision making 
at the highest level of wind integration being just 4%. Thus, 
although the commitment decision made by a heuristic rule 
can leave the system ill prepared for improbable events, 
handling these events with a single stage optimization results 
in a total cost for the decision rule that is close to that of the 
SDP. 

The results suggest that the benefit of using stochastic 
optimization as opposed to operating rules based on Monte 
Carlo analysis of a deterministic model are relatively modest 
for intermediate or small levels of wind integration. This 
conclusion is, of course, specific to the particular model 
parameters and input datasets used. The wind data tested was 
aggregated from turbine sites across the Netherlands, perhaps 
resulting in lower variance than wind generation serving more 
local markets. Transmission constraints may inhibit the 
interegional hedging of turbine sites and should be 
investigated in further work. Finally, the Netherlands system 
has a higher proportion of gas units than other markets, and 
these provide added flexibility and thus lower integration costs 
than in markets with larger proportions of coal or nuclear. 

In addition, the computational limitations of using a SDP to 
model a large system necessitates significant approximations. 
The need to combine generators into a small number of 
aggregate units means that a commitment and dispatch path 
for components of each aggregate unit must be assumed. It is 
unclear how this assumption would affect the comparison 
between models. Discretizations of demand, generation and 
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time are also necessary in the SDP, as are assumptions of 
relatively short unit start-up and shut-down times for gas units. 
Those assumptions overstate the flexibility of the system, and 
may result in underestimation of the cost differences between 
models. Unit flexibility is comparatively more valuable in 
stochastic optimization than deterministic optimization 
because the latter can prepare for large thermal demand 
changes ahead of time.  

These limitations on drawing general conclusions are the 
basis for further work on stochastic unit commitment and 
dispatch. Work on improving the applicability of this 
methodology by incorporating start-up and shut-down times 
and reducing the aggregation of units will help better quantify 
the value of perfect forecasting. This work is important to 
determining the benefits of better forecasts and whether the 
added complexity of stochastic unit commitment and dispatch 
models are a worthwhile investment. 
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